Effective Hamiltonians and Averaging for Hamiltonian Dynamics I
نویسندگان
چکیده
منابع مشابه
Effective Hamiltonians and Averaging for Hamiltonian Dynamics II
We extend to time-dependent Hamiltonians some of the PDE methods from our previous paper [E-G1], and in particular the theory of “effective Hamiltonians” introduced by Lions, Papanicolaou & Varadhan [L-P-V]. These PDE techniques augment the variational approach of Mather [Mt1,Mt2,Mt3,Mt4,M-F] and the weak KAM methods of Fathi [F1,F2,F3,F4,F5]. We also provide a weak interpretation of adiabatic ...
متن کاملLong-time averaging for integrable Hamiltonian dynamics
Given a Hamiltonian dynamics, we address the question of computing the space-average (referred as the ensemble average in the field of molecular simulation) of an observable through the limit of its time-average. For a completely integrable system, it is known that ergodicity can be characterized by a diophantine condition on its frequencies and that the two averages then coincide. In this pape...
متن کاملEffective Hamiltonian of Electroweak Penguin for Hadronic b Quark Decays
In this research we work with the effective Hamiltonian and the quark model. We investigate the decay rates of matter-antimatter of quark. We describe the effective Hamiltonian theory and apply this theory to the calculation of current-current ( ), QCD penguin ( ), magnetic dipole ( ) and electroweak penguin ( ) decay rates. The gluonic penguin structure of hadronic decays is studied thro...
متن کاملHamiltonian averaging for solitons with nonlinearity management.
We revisit the averaged equation, derived in Phys. Rev. Lett. 91, 240201 (2003)] from the nonlinear Schrödinger (NLS) equation with the nonlinearity management. We show that this averaged equation is valid only at the initial time interval, while a new Hamiltonian averaged NLS equation can be used at longer time intervals. Using the new averaged equation, we construct numerically matter-wave so...
متن کاملExponential Averaging for Hamiltonian Evolution Equations
We derive estimates on the magnitude of non-adiabatic interaction between a Hamiltonian partial differential equation and a high-frequency nonlinear oscillator. Assuming spatial analyticity of the initial conditions, we show that the dynamics can be transformed to the uncoupled dynamics of an infinite-dimensional Hamiltonian system and an anharmonic oscillator, up to coupling terms which are ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2001
ISSN: 0003-9527
DOI: 10.1007/pl00004236